Jika bola keluli (bebola galas) saiz bumi, disebabkan mana-mana akan tidak melebihi ketinggian Menara Eiffel? Itulah soalan yang sangat bagus. Kami percaya bahawa bola keluli adalah perkara roundest di dunia, tetapi bagaimana pusingan adalah ia? Marilah kita sahkan ini:
Kerana beliau berkata kemuncak disebabkan, saya fikir ia harus roughness permukaan dalam spesifikasi teknikal galas bebola. Mengambil produk kami contohnya: ketepatan gred terbaik kami 2" keluli bebola galas adalah G20. Yang bermakna permukaan roughness ialah tidak melebihi masa 0.032 μm. Kita boleh mengira nisbah adalah lebih kurang 1:1587500. Dan kita tahu dengan diameter bumi adalah 12742.02 km, jadi pengiraan kami menunjukkan ketinggian disebabkan sepatutnya tidak lebih tinggi daripada 8.03 juta. Dan ketinggian Menara Eiffel 276.1 m (tanpa out). Well, ia seolah-olah ada sesuatu yang wrong.☺
Jika disebabkan itu bermakna tolak-ansur dalam roundness (variasi bola diameter) dan sisihan dari bentuk sfera. Keperluan G20 0.5 μm, perkadaran adalah lebih kurang 1:101600. Maka disebabkan ketinggian hendaklah tidak lebih tinggi daripada 125.4 m. Kita dapat melihat dengan lebih dekat, tetapi tidak cukup.
Perubahan untuk G40 2" keluli bebola galas, tolak-ansur dalam roundness akan 1 μm dan perkadaran adalah lebih kurang 1:50800. Maka kita tahu ketinggian adalah m 250.8, toleransi 25.3 juta hanya dengan ketinggian Menara Eiffel.
Oleh itu, jika sebuah G40 2" keluli bola (ball galas) saiz bumi, disebabkan mana-mana akan tidak melebihi ketinggian Menara Eiffel!